3,445 research outputs found

    Two-dimensional approach to relativistic positioning systems

    Full text link
    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out.Comment: 11 pages, 5 figures. v2: a brief description of the principal bibliography has been adde

    Positioning with stationary emitters in a two-dimensional space-time

    Get PDF
    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D {\bf 73}, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make {\em relativistic gravimetry}. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called {\em emission coordinates}, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out.Comment: 14 pages; 5 figure

    Relativistic Positioning Systems: The Emission Coordinates

    Get PDF
    This paper introduces some general properties of the gravitational metric and the natural basis of vectors and covectors in 4-dimensional emission coordinates. Emission coordinates are a class of space-time coordinates defined and generated by 4 emitters (satellites) broadcasting their proper time by means of electromagnetic signals. They are a constitutive ingredient of the simplest conceivable relativistic positioning systems. Their study is aimed to develop a theory of these positioning systems, based on the framework and concepts of general relativity, as opposed to introducing `relativistic effects' in a classical framework. In particular, we characterize the causal character of the coordinate vectors, covectors and 2-planes, which are of an unusual type. We obtain the inequality conditions for the contravariant metric to be Lorentzian, and the non-trivial and unexpected identities satisfied by the angles formed by each pair of natural vectors. We also prove that the metric can be naturally split in such a way that there appear 2 parameters (scalar functions) dependent exclusively on the trajectory of the emitters, hence independent of the time broadcast, and 4 parameters, one for each emitter, scaling linearly with the time broadcast by the corresponding satellite, hence independent of the others.Comment: 13 pages, 3 figures. Only format changed for a new submission. Submitted to Class. Quantum Gra

    Relativistic positioning: four-dimensional numerical approach in Minkowski space-time

    Full text link
    We simulate the satellite constellations of two Global Navigation Satellite Systems: Galileo (EU) and GPS (USA). Satellite motions are described in the Schwarzschild space-time produced by an idealized spherically symmetric non rotating Earth. The trajectories are then circumferences centered at the same point as Earth. Photon motions are described in Minkowski space-time, where there is a well known relation, Coll, Ferrando & Morales-Lladosa (2010), between the emission and inertial coordinates of any event. Here, this relation is implemented in a numerical code, which is tested and applied. The first application is a detailed numerical four-dimensional analysis of the so-called emission coordinate region and co-region. In a second application, a GPS (Galileo) satellite is considered as the receiver and its emission coordinates are given by four Galileo (GPS) satellites. The bifurcation problem (double localization) in the positioning of the receiver satellite is then pointed out and discussed in detail.Comment: 16 pages, 9 figures, published (online) in Astrophys. Space Sc

    Positioning systems in Minkowski space-time: Bifurcation problem and observational data

    Full text link
    In the framework of relativistic positioning systems in Minkowski space-time, the determination of the inertial coordinates of a user involves the {\em bifurcation problem} (which is the indeterminate location of a pair of different events receiving the same emission coordinates). To solve it, in addition to the user emission coordinates and the emitter positions in inertial coordinates, it may happen that the user needs to know {\em independently} the orientation of its emission coordinates. Assuming that the user may observe the relative positions of the four emitters on its celestial sphere, an observational rule to determine this orientation is presented. The bifurcation problem is thus solved by applying this observational rule, and consequently, {\em all} of the parameters in the general expression of the coordinate transformation from emission coordinates to inertial ones may be computed from the data received by the user of the relativistic positioning system.Comment: 10 pages, 7 figures. The version published in PRD contains a misprint in the caption of Figure 3, which is here amende

    Positioning systems in Minkowski space-time: from emission to inertial coordinates

    Full text link
    The coordinate transformation between emission coordinates and inertial coordinates in Minkowski space-time is obtained for arbitrary configurations of the emitters. It appears that a positioning system always generates two different coordinate domains, namely, the front and the back emission coordinate domains. For both domains, the corresponding covariant expression of the transformation is explicitly given in terms of the emitter world-lines. This task requires the notion of orientation of an emitter configuration. The orientation is shown to be computable from the emission coordinates for the users of a `central' region of the front emission coordinate domain. Other space-time regions associated with the emission coordinates are also outlined.Comment: 20 pages; 1 figur

    Neutrinos from supernovae: experimental status and perspectives

    Get PDF
    I discuss the state of the art in the search for neutrinos from galactic stellar collapses and the future perspectives of this field. The implications for the neutrino physics of a high statistics supernova neutrino burst detection by the network of detectors operating around the world are also reviewed.Comment: 19 pages, 12 figures. Extended version of talk given at IInd International Workshop on Matter, Anti-Matter and Dark Matter, Trento (Italy), 29-30 October 2001. A reduced version will appear in Int. J. of Mod. Phys.

    Local thermal equilibrium and ideal gas Stephani universes

    Full text link
    The Stephani universes that can be interpreted as an ideal gas evolving in local thermal equilibrium are determined. Five classes of thermodynamic schemes are admissible, which give rise to five classes of regular models and three classes of singular models. No Stephani universes exist representing an exact solution to a classical ideal gas (one for which the internal energy is proportional to the temperature). But some Stephani universes may approximate a classical ideal gas at first order in the temperature: all of them are obtained. Finally, some features about the physical behavior of the models are pointed out.Comment: 20 page

    The Matter and Purpose of G.B. Shaw\u27s Saint Joan--A Play of Ideas

    Get PDF
    corecore